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Abstract. We study Nonassociative Lambek Calculus with additives
∧,∨, satisfying the distributive law (Distributive Full Nonassociative
Lambek Calculus DFNL). We prove that categorial grammars based
on DFNL, also enriched with assumptions, generate context-free lan-
guages. The proof uses proof-theoretic tools (interpolation) and a con-
struction of a finite model, earlier employed in [11] in the proof of Finite
Embeddability Property (FEP) of DFNL; our paper is self-contained,
since we provide a simplified version of the latter proof. We obtain anal-
ogous results for different variants of DFNL, e.g. BFNL, which admits
negation ¬ such that ∧,∨,¬ satisfy the laws of boolean algebra, and
HFNL, corresponding to Heyting algebras with an additional residua-
tion structure. Our proof also yields Finite Embeddability Property of
boolean-ordered and Heyting-ordered residuated groupoids. The paper
joins proof-theoretic and model-theoretic techniques of modern logic with
standard tools of mathematical linguistics.

1 Introduction

Nonassociative Lambek Calculus NL proves the order formulas α ≤ β, valid in
residuated groupoids, i.e. ordered algebras (M, ·, \, /,≤) such that (M,≤) is a
poset, and ·, \, / are binary operations on M , satisfying the residuation law:

a · b ≤ c iff b ≤ a\c iff a ≤ c/b , (1)

for all a, b, c ∈ M . As an easy consequence of (1), we obtain:

a(a\b) ≤ b , (a/b)b ≤ a , (2)

if a ≤ b then ca ≤ cb , ac ≤ bc , c\a ≤ c\b , a/c ≤ b/c , b\c ≤ a\c , c/b ≤ c/a , (3)

for all a, b, c ∈ M . Hence every residuated groupoid is a partially ordered
groupoid, if one forgets residuals \, / (we refer to · as product).

NL was introduced by Lambek [19] as a variant of Syntactic Calculus [18],
now called Associative Lambek Calculus L, which yields the order formulas
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valid in residuated semigroups (· is associative). Both are standard type logics
for categorial grammars [3,8,21,22]. While L is appropriate for expressions in the
form of strings, NL corresponds to tree structures. The cut-elimination theorem
holds for NL and L, and it yields the decidability of these systems [18,19].

NL and L are examples of substructural logics, i.e. non-classical logics whose
sequent systems lack some structural rules (Weakening, Contraction, Exchange).
Besides multiplicatives ·, \, /, substructural logics usually admit additives ∧,∨.
The related algebras are residuated lattices (M,∧,∨, ·, \, /, 1): here (M,∧,∨) is
a lattice, (M, ·, 1) is a monoid (i.e. a semigroup with 1), and (1) holds. For the
nonassociative case, monoids are replaced by groupoids or unital groupoids (i.e.
groupoids with 1); the resulting algebras are called lattice-ordered residuated
(unital) groupoids. An algebra of that kind is said to be distributive, if its lattice
reduct is distributive. The complete logic for residuated lattices is Full Lambek
Calculus FL; it admits cut-elimination and is decidable [13]. FL amounts to the
*-free fragment of Pratt’s action logic [10].

Full Nonassociative Lambek Calculus FNL is the complete logic of lattice-
ordered residuated groupoids. We present it in the form of a sequent system.
The cut-elimination theorem holds for this system [13]. It is not useful for our
purposes, since we consider the consequence relation of FNL which requires the
cut rule to be complete with respect to algebraic models. Furthermore, our main
issue is DFNL in which the distributive law is affixed as a new axiom; the cut
rule is necessary in DFNL.

Categorial grammars based on NL generate precisely the ε−free context-free
languages [7,17,15]. Pentus [24] proves the same for L. Using FL, even without
∨, one can generate languages which are not context-free, i.e. meets of two
context-free languages [16]. This also holds for FL with distribution, since it
is conservative over its ∨−free fragment. The provability problem for L is NP-
complete [25]; for FL, the upper bound is P-SPACE. Categorial grammars with
(partial) commutation can generate non-context-free languages [6,12].

We prove that (in opposition to FL) categorial grammars based on DFNL
generate context-free languages, and it remains true if one adds an arbitrary fi-
nite set of assumptions to DFNL. For NL, an analogous result has been proved
in [9]. The latter paper also proves the polynomial time decidability of the con-
sequence relation of NL (extending a result of [14] for pure NL), but it does
not hold in the presence of additives. The consequence relation of DFNL is
decidable; this follows from FEP. It is known that the consequence relation for
L is undecidable [9].

The construction of a finite model, used in the proof of FEP for DFNL in [11],
will also be employed here (in a modified form) in order to prove the subformula
property (of logics with cut) and, consequently, an interpolation lemma in an
unrestricted version (see section 3).

Our methods can be extended to multi-modal variants of DFNL which admit
several ‘product’ operations (of arbitrary arity) and the corresponding residual
operations. Without additives, this multi-modal framework was presented in
[8,9]. It is also naturally related to multi-modal extensions of Lambek Calculus,
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studied in e.g. [21,22]. This leads us to the proof of FEP for BFNL, which is the
complete logic of boolean-ordered residuated groupoids, and the context-freeness
of the corresponding grammars. Similar results are obtained for HFNL, which is
the complete logic of Heyting-ordered residuated groupoids. Our results cannot
directly be adapted for systems describing non-distributive lattices.

(External) consequence relations for substructural logics have been studied in
different contexts; see e.g. [1,5,13]. Put it differently, one studies logics enriched
with (finitely many) assumptions. Assumptions are sequents (not closed under
substitution) added to axioms of the system (with the cut rule). Categorial
grammars are usually required to be lexical in the sense that the logic is common
for all languages and all information on the particular language is contained in
the type lexicon. But, there are approaches allowing non-lexical assumptions,
which results in a more efficient description of the language and an increase of
generative power [8,20]. Let us emphasize that our results on context-freeness
are new even for pure logics DFNL, BFNL and HFNL, and assumptions do
not change anything essential in proofs.

Categorial grammars with additives are not popular in the linguistic literature.
There are, nonetheless, good reasons for studying them. As it has been mentioned
above, additives are standard operations in linear logics and other substructural
logics [13]. The syntactic category of type α is usually understood as the set of all
strings (or: trees; this seems more natural for the nonassociative case) which are
assigned type α by the grammar. Then, it is natural to consider basic boolean
operations on sets and to explicitely represent them in the grammar formalism.
In general, they can result in a refinement of language description.

Types with ∧ were used already in Lambek [19] in order to change a finite type
assignment a �→ αi, i = 1, . . . , n, into a rigid type assignment a �→ α1 ∧ · · · ∧ αn

in the type lexicon of a categorial grammar (see section 4 for a definition of a
categorial grammar). Standard basic categories, e.g. ‘s’ (sentence), ‘np’ (noun
phrase), ‘pro’ (pronoun), are not sufficient for a really effective description of
natural language. One can divide them in subcategories. Lambek [20] considers
three types of sentence: s1 (sentence in the present tense), s2 (sentence in the past
tense), and s (sentence when the tense is not relevant) and four types of personal
pronouns: π1, π2, π3 for first, second and third person pronoun, respectively, and
π when the person is irrelevant. This naturally leads to non-lexical assumptions,
like si ⇒ s, πi ⇒ π, added to the basic logic. An alternative solution is to
define s = s1 ∨ s2, π = π1 ∨ π2 ∨ π3 which introduces ∨ on the scene. Kanazawa
[16] proposes feature decomposition of basic categories; ‘walks’ is assigned type
(np ∧ sing)\s, ‘walk’ type (np ∧ pl)\s, ‘walked’ type np \s, ‘John’ type np ∧
sing, ‘the Beatles’ type np ∧ pl, and ‘became’ type (np \s)/(np∨ ap), where ‘ap’
stands for ‘adjective phrase’. Types with negation can be employed to represent
a negative information; for instance, John �→ ¬s means that ‘John’ is not a
sentence. It is well-known that negative information makes learning algorithms
for formal grammars more efficient. It opens an interesting area of application
for grammars with negation.
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2 Restricted Interpolation

We admit a denumerable set of variables p, q, r, . . .. Formulas are built from
variables by means of ·, \, /,∧,∨. Formula structures (shortly: structures) are
built from formulas according to the rules: (1) every formula is a structure, (2)
if X, Y are structures then (X, Y ) is a structure. We denote arbitrary formulas
by α, β, γ, . . . and structures by X, Y, Z. A context is a structure X [◦] containing
a single occurrence of a special substructure ◦ (a place for substitution); X [Y ]
denotes the result of substitution of Y for ◦ in X [◦].

Sequents are of the form X ⇒ α. FNL assumes the following axioms and
inference rules:

(Id) α ⇒ α ,

(·L)
X [(α, β)] ⇒ γ

X [α · β] ⇒ γ
, (·R)

X ⇒ α; Y ⇒ β

(X, Y ) ⇒ α · β ,

(\L)
X [β] ⇒ γ; Y ⇒ α

X [(Y, α\β)] ⇒ γ
, (\R)

(α, X) ⇒ β

X ⇒ α\β ,

(/L)
X [β] ⇒ γ; Y ⇒ α

X [(β/α, Y )] ⇒ γ
, (/R)

(X, α) ⇒ β

X ⇒ β/α
,

(∧L)
X [αi] ⇒ β

X [α1 ∧ α2] ⇒ β
, (∧R)

X ⇒ α; X ⇒ β

X ⇒ α ∧ β
,

(∨L)
X [α] ⇒ γ; X [β] ⇒ γ

X [α ∨ β] ⇒ γ
, (∨R)

X ⇒ αi

X ⇒ α1 ∨ α2
,

(CUT)
X [α] ⇒ β; Y ⇒ α

X [Y ] ⇒ β
.

In (∧L) and (∨R), the subscript i equals 1 or 2. The latter rules and (·L),
(\R), (/R) have one premise; the remaining rules have two premises, separated
by semicolon. DFNL admits the additional axiom scheme:

(D) α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ) .

Notice that the converse sequent is provable in FNL. (CUT) can be eliminated
from FNL but not from DFNL. For instance, α ∧ (β ∨ (γ ∨ δ)) ⇒ (α ∧ β) ∨
((α ∧ γ) ∨ (α ∧ δ)) cannot be proved without (CUT).

Let Φ be a set of sequents. We write Φ 
 X ⇒ α if X ⇒ α is deducible
from Φ in DFNL. By F (X) we denote the formula arising from X after one has
replaced each comma by ·. By (·L) and (Id), (·R), (CUT), X ⇒ α and F (X) ⇒ α
are mutually deducible. Consequently, without loss of generality we can assume
that Φ consists of sequents of the form α ⇒ β (simple sequents). In models,
⇒ is interpreted as ≤ and, by definition, an assignment f satisfies X ⇒ α iff
f(F (X)) ≤ f(α).

In what follows, we always assume that Φ is a finite set of simple sequents.
T denotes a set of formulas. By a T−sequent we mean a sequent such that all
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formulas occurring in it belong to T . We write X ⇒Φ,T α if X ⇒ α has a
deduction from Φ in DFNL which consists of T−sequents only (then, X ⇒ α
must be a T−sequent). In proofs we write ⇒T for ⇒Φ,T . The following lemma
is proved for DFNL but the same proof works for FNL.

Lemma 1. Let T be closed under ∧,∨. Let X [Y ] ⇒Φ,T γ. Then, there exists
δ ∈ T such that X [δ] ⇒Φ,T γ and Y ⇒Φ,T δ.

Proof. δ is called an interpolant of Y in X [Y ] ⇒ γ. The proof proceeds by
induction on T−deductions of X [Y ] ⇒ γ from Φ.

The case of axioms and assumptions is easy; they are simple sequents α ⇒ γ,
so Y = α and δ = α.

Let X [Y ] ⇒ γ be the conclusion of a rule. (CUT) is easy. If Y comes from one
premise of (CUT), then we take an interpolant from this premise. Otherwise Y
must contain Z, where the premises are X [α] ⇒ γ, Z ⇒ α. So, Y = U [Z], and
it comes from U [α] in the first premise. Then, an interpolant δ of U [α] in this
premise is also an interpolant of Y in the conclusion, by (CUT).

Let us consider other rules. First, we assume that Y does not contain the
formula, introduced by the rule (the active formula). If Y comes from exactly
one premise of the rule, then one takes an interpolant from this premise. Let us
consider (∧R). The premises are X [Y ] ⇒ α, X [Y ] ⇒ β, and the conclusion is
X [Y ] ⇒ α∧ β. By the induction hypothesis, there are interpolants δ of Y in the
first premise and δ′ of Y in the second one. We have X [δ] ⇒T α, X [δ′] ⇒T β,
Y ⇒T δ, Y ⇒T δ′. Then, δ∧δ′ is an interpolant of Y in the conclusion, by (∧L),
(∧R). Let us consider (∨L). The premises are X [α][Y ] ⇒ γ, X [β][Y ] ⇒ γ, and
the conclusion is X [α ∨ β][Y ] ⇒ γ, where Y does not contain α ∨ β. As above,
there are interpolants δ, δ′ of Y in the premises. Again δ ∧ δ′ is an interpolant
of Y in the conclusion, by (∧L), (∨L) and (∧R). For (·R) with premises U ⇒ α,
V ⇒ β and conclusion (U, V ) ⇒ α · β, if Y = (U, V ), then we take δ = α · β.

Second, we assume that Y contains the active formula (so, the rule must be
an L-rule). If Y is a single formula, then we take δ = Y . Assume that Y is not a
formula. For (·L), (∧L), we take an interpolant of Y ′ in the premise, where Y ′ is
the natural source of Y . For (\L) with premises X [β] ⇒ γ, Z ⇒ α and conclusion
X [(Z, α\β)] ⇒ γ, we consider the source Y ′ of Y (Y ′ occurs in X [β] and contains
β). Then, Y arises from Y ′ by substituting (Z, α\β) for β. Hence, an interpolant
of Y ′ in the first premise is also an interpolant of Y in the conclusion, by (\L).
The case of (/L) is similar. The final case is (∨L) with premises Z[U [α]] ⇒ γ,
Z[U [β]] ⇒ γ and conclusion Z[U [α ∨ β]] ⇒ γ, where Y = U [α ∨ β]. Let δ be
an interpolant of U [α] in the first premise and δ′ be an interpolant of U [β] in the
second premise. Then, δ∨δ′ is an interpolant of Y in the conclusion, by (∨L),(∨R).

��

3 Finite Models and Interpolation

We prove an (extended) subformula property and an interpolation lemma for the
deducibility relation 
 in DFNL. We need some constructions of lattice-ordered
residuated groupoids.
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Let (M, ·) be a groupoid. On the powerset P (M) one defines operations:
U · V = {ab : a ∈ U, b ∈ V }, U\V = {c ∈ M : U · {c} ⊆ V }, U/V = {c ∈ M :
{c} · V ⊆ U}, U ∨ V = U ∪ V , U ∧ V = U ∩ V . P (M) with these operations is a
distributive lattice-ordered groupoid (it is a complete lattice). The order is ⊆.

An operator C : P (M) �→ P (M) is called a closure operator (or: a nucleus)
on (M, ·), if it satisfies the following conditions: (C1) U ⊆ C(U), (C2) if U ⊆ V
then C(U) ⊆ C(V ), (C3) C(C(U)) ⊆ C(U), (C4) C(U) · C(V ) ⊆ C(U · V ),
for all U, V ⊆ M [13]. A set U ⊆ M is said to be closed, if C(U) = U . By
C(M, ·) we denote the family of all closed subsets of M . Operations on C(M, ·)
are defined as follows: U ⊗ V = C(U · V ), U\V , U/V and U ∧ V as above,
U ∨V = C(U ∪V ). (The product operation in C(M, ·) is denoted by ⊗ to avoid
collision with · in P (M).) It is known that C(M, ·) with these operations is a
complete lattice-ordered residuated groupoid [13]; it need not be distributive.
The order is ⊆.

(C4) is essential in the proof that C(M, ·) is closed under \, /. Actually, if
U is closed, then V \U and U/V are closed, for any V ⊆ M . Let us consider
U/V . Since (2) hold in P (M), then (U/V ) · V ⊆ U . We get C(U/V ) · V ⊆
C(U/V )·C(V ) ⊆ C((U/V )·V ) ⊆ C(U) = U , and consequently, C(U/V ) ⊆ U/V ,
by (1) for P (M). The reader is invited to prove that (1) holds in C(M, ·) and
C(U ∪ V ) is the join of U, V in C(M, ·).

Let T be a nonempty set of formulas. By T ∗ we denote the set of all structures
formed out of formulas from T . T ∗[◦] denotes the set of all contexts X [◦] whose
all atomic substructures different from ◦ belong to T .

T ∗ is a (free) groupoid with the operation X · Y = (X, Y ). Hence P (T ∗)
is a lattice-ordered residuated groupoid with operations defined as above. For
Z[◦] ∈ T ∗[◦] and α ∈ T , we define a set:

[Z[◦], α] = {X ∈ T ∗ : Z[X ] ⇒Φ,T α}. (4)

The family of all sets [Z[◦], α], defined in this way, is denoted B(T ). An
operator CT : P (T ∗) �→ P (T ∗) is defined as follows:

CT (U) =
⋂

{[Z[◦], α] ∈ B(T ) : U ⊆ [Z[◦], α]} , (5)

for U ⊆ T ∗. It is easy to see that CT satisfies (C1), (C2), (C3). We prove (C4).
Let U, V ⊆ T ∗ and X ∈ CT (U), Y ∈ CT (V ). We show (X, Y ) ∈ CT (U · V ).
Let [Z[◦], α] ∈ B(T ) be such that U · V ⊆ [Z[◦], α]. For any X ′ ∈ U , Y ′ ∈ V ,
(X ′, Y ′) ∈ [Z[◦], α], whence Z[(X ′, Y ′)] ⇒T α. So, U ⊆ [Z[(◦, Y ′)], α], whence
CT (U) ⊆ [Z[(◦, Y ′)], α], by (5), and the latter holds for any Y ′ ∈ V . Then,
Z[(X, Y ′)] ⇒T α, for any Y ′ ∈ V . We get V ⊆ [Z[(X, ◦)], α], which yields
CT (V ) ⊆ [Z[(X, ◦)], α], by (5). Consequently, Z[(X, Y )] ⇒T α, whence (X, Y ) ∈
[Z[◦], α] (see [23,2,13,11] for similar arguments).

We have shown that CT is a closure operator on (T ∗, ·). We consider the
algebra CT (T ∗, ·), further denoted by M(T, Φ). Clearly, all sets in B(T ) are
closed under CT . We define:

[α] = [◦, α] = {X ∈ T ∗; X ⇒Φ,T α} . (6)
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For α ∈ T , [α] ∈ B(T ). The following equations are true in M(T, Φ) provided
that all formulas appearing in them belong to T .

[α] ⊗ [β] = [α · β], [α]\[β] = [α\β], [α]/[β] = [α/β] , (7)

[α] ∨ [β] = [α ∨ β], [α] ∧ [β] = [α ∧ β] . (8)

We prove the first equation (7). If X ⇒T α and Y ⇒T β then (X, Y ) ⇒T α·β,
by (·R). Consequently, [α] · [β] ⊆ [α · β]. Then [α] ⊗ [β] = CT ([α] · [β]) ⊆ [α · β],
by (C2), (C3). We prove the converse inclusion. Let [Z[◦], γ] ∈ B(T ) be such
that [α] · [β] ⊆ [Z[◦], γ]. By (Id), α ∈ [α], β ∈ [β], whence Z[(α, β)] ⇒T γ. Then,
Z[α · β] ⇒T γ, by (·R). Hence, if X ∈ [α · β] then Z[X ] ⇒T γ, by (CUT), which
yields X ∈ [Z[◦], γ]. We have shown [α · β] ⊆ CT ([α] · [β]).

We prove the second equation (7). Let X ∈ [α]\[β]. Since α ∈ [α], then
(α, X) ∈ [β]. Hence (α, X) ⇒T β, which yields X ⇒T α\β, by (\R). We have
shown ⊆. To prove the converse inclusion it suffices to show [α] · [α\β] ⊆ [β]. If
X ⇒T α and Y ⇒T α\β, then (X, Y ) ⇒T β, since (α, α\β) ⇒T β, by (Id), (\L),
and one applies (CUT). The proof of the third equation (7) is similar. Proofs of
(8) are left to the reader.

We say that formulas α, β ∈ T are T−equivalent, if α ⇒T β and β ⇒T α.
By (Id), (CUT), T−equivalence is an equivalence relation. By T we denote the
smallest set of formulas which contains all formulas from T and is closed under
subformulas and ∧,∨. If T is closed under subformulas, then T is the closure
of T under ∧,∨. The following lemma is a syntactic variant of the well-known
fact that distributive lattices are locally finite (it means: every finitely generated
distributive lattice is finite).

Lemma 2. If T is a finite set of formulas, then T is finite up to T−equivalence.

Proof. If T is finite, then the set T ′ of subformulas of formulas from T is also
finite. T is the closure of T ′ under ∧,∨. The converse of (D) (α∧β)∨ (α∧ γ) ⇒
α∧ (β ∨ γ) is provable in FNL (it is valid in all lattices); if α, β, γ ∈ T , then the
proof uses T−sequents only. Consequently, for α, β, γ ∈ T , both sides of (D) are
T−equivalent. It follows that every formula from T is T−equivalent to a finite
disjunction of finite conjunctions of formulas from T ′. If one omits repetitions,
then there are only finitely many formulas of the latter form. ��

Recall that an assignment in a model M is a homomorphism from the formula
algebra into M .

Lemma 3. Let T be a nonempty, finite set of formulas. Then, M(T , Φ) is a
finite distributive lattice-ordered residuated groupoid. For any assignment f in
M(T , Φ) such that f(p) = [p], for any p ∈ T , and any T−sequent X ⇒ α, f
satisfies X ⇒ α in M(T , Φ) if and only if X ⇒T α.

Proof. As shown above, M(T , Φ) is a lattice-ordered residuated groupoid. We
prove the second part of the lemma. Let f satisfy f(p) = [p], for any
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variable p ∈ T . Using (7), (8), one proves f(α) = [α], for all α ∈ T , by easy
formula induction.

Assume that f satisfies the T−sequent X ⇒ α. For any formula β appearing
in X , we have β ∈ [β] = f(β), whence X ∈ f(F (X)). Since f(F (X)) ⊆ f(α),
then X ∈ f(α) = [α]. Thus X ⇒T α. Assume X ⇒T α. Then, there exists
a T−deduction of X ⇒ α from Φ in DFNL. By induction on this deduction,
we prove that f satisfies X ⇒ α in M(T , Φ). f obviously satisfies axioms (Id).
Assumptions from Φ and instances of (D), restricted to T−sequents, are of the
form β ⇒ γ, where β, γ ∈ T . Since β ⇒T γ, then [β] ⊆ [γ], by (CUT), which
yields f(β) ⊆ f(γ). The rules of FNL are sound for any assignment in a lattice-
ordered residuated groupoid, which finishes this part of proof.

Let R be a selector of the family of equivalence classes of T−equivalence (R
chooses one formula from each equivalence class). By Lemma 2, R is a nonempty
finite subset of T . We show that every nontrivial (i.e. nonempty and not total)
closed subset of T

∗
equals [α], for some α ∈ R. Let U be nontrivial and closed..

Let X ∈ U . There exists a set [Z[◦], β] ∈ B(T ) such that U ⊆ [Z[◦], β]. So,
Z[X ] ⇒T β. By Lemma 1, there exists δ ∈ T such that Z[δ] ⇒T β and X ⇒T δ.
We get X ∈ [δ] and [δ] ⊆ [Z[◦], β], by (CUT). Clearly we can take δ ∈ R. We can
find such a formula δ ∈ R, for any set [Z[◦], β] ∈ B(T ) such that U ⊆ [Z[◦], β].
Let γX be the conjunction of all formulas δ, fulfilling the above. By (8), (C3)
and (6), X ∈ [γX ] and [γX ] ⊆ U . We can replace γX by a T−equivalent formula
from R. So, we stipulate γX ∈ R. Let α be the disjunction of all formulas γX ,
for X ∈ U . By (8), [α] ⊆ U and, evidently, U ⊆ [α]. We can assume α ∈ R.

It follows that M(T, Φ) is finite. We prove that it is distributive. It suffices to
prove U∧(V ∨W ) ⊆ (U∧V )∨(U∧W ), for any closed sets U, V, W . This inclusion
is true, if at least one of the sets U, V, W is empty or total, since M(T , Φ) is a
lattice. So, assume U, V, W be nontrivial. By the above paragraph, U = [α],
V = [β], W = [γ], for some α, β, γ ∈ R. Then, the inclusion follows from (8) and
the fact that [α ∧ (β ∨ γ)] ⊆ [(α ∧ β) ∨ (α ∧ γ)]. ��

We are ready to prove an extended subformula property and an interpolation
lemma for DFNL.

Lemma 4. Let T be a finite set of formulas, containing all formulas appearing
in X ⇒ α and Φ. If Φ 
 X ⇒ α then X ⇒Φ,T α.

Proof. Let f be an asignment in M(T , Φ), satisfying f(p) = [p], for any variable
p ∈ T . Let β ⇒ γ be a sequent from Φ. Then β ⇒T γ, which yields f(β) ⊆ f(γ),
by Lemma 3. So, f satisfies all sequents from Φ.

Assume Φ 
 X ⇒ α. Since DFNL is strongly sound with respect to distribu-
tive lattice-ordered residuated groupoids, then f satisfies X ⇒ α. Consequently,
X ⇒T α, by Lemma 3. ��

Lemma 5. Let T be a finite set of formulas, containing all formulas appearing
in X [Y ] ⇒ α and Φ. If Φ 
 X [Y ] ⇒ α then there exists δ ∈ T such that
Φ 
 X [δ] ⇒ α and Φ 
 Y ⇒ δ.
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Proof. Assume Φ 
 X [Y ] ⇒ α. By Lemma 4, X [Y ] ⇒T α. Apply Lemma 1. ��
Lemma 3 except for the finiteness and distributivity of M(T , Φ) and Lemmas 4
and 5 also hold for FNL. For NL, Lemma 4 and Lemma 5 hold with T defined
as the closure of T under subformulas [9] (for pure NL, a weaker form of the
latter lemma was proved in [15]).

This yields Strong Finite Model Property (SFMP) of DFNL: if Φ 
 X ⇒ α
does not hold in DFNL, then there exist a finite distributive lattice-ordered
residuated groupoid M and an assignment f such that all sequents from Φ
are true under f , but X ⇒ α is not (take T as in Lemma 4 and use Lemma 3).
Equivalently, every Horn formula which is not valid in distributive lattice-ordered
residuated groupoids is falsified in a finite model. If a class of algebras K is closed
under (finite) products, then SFMP for K is equivalent to FEP for K: every finite
partial subalgebra of an algebra from K is embeddable into a finite algebra from
K [13]. (The latter is equivalent to FMP of the universal theory of K.) Then, FEP
holds for the class of distributive lattice-ordered residuated groupoids (proved
in [11] in collaboration with the first author; the present proof is simplified).

4 Categorial Grammars Based on DFNL

A categorial grammar based on a logic L (presented as a sequent system) is
defined as a tuple G = (Σ, I, α0, Φ) such that Σ is a finite alphabet, I is a
nonempty finite relation between elements of Σ and formulas of L, α0 is a formula
of L, and Φ is a finite set of sequents of L. Elements of Σ are usually interpreted
as words from the lexicon of a language and strings on Σ as phrases. Formulas
of L are called types. I assigns finitely many types to each word from Σ. If I is
fixed, then one often writes a �→ β for (a, β) ∈ I. α0 is a designated type; often
one takes a designated variable s (the type of sentences). L is the logic of type
change and composition. Φ is a finite set of assumptions added to L.

Our logic L is DFNL. Let G = (Σ, I, α0, Φ) be a categorial grammar. By
T (G) we denote the set of all types appearing in the range of I. Let T be the
smallest set containing T (G), all types from Φ and α0. For any type β, we define
L(G, β) = {X ∈ T

∗
: Φ 
 X ⇒ β}. Elements of T

∗
can be seen as finite

binary trees whose leaves are labeled by types from T . The tree language of
G, denoted by Lt(G), consists of all trees which can be obtained from trees in
L(G, α0) ∩ T (G)∗ by replacing each type γ by some a ∈ Σ such that (a, γ) ∈ I.
The language of G, denoted by L(G), is the yield of Lt(G).

Theorem 1. L(G) is a context-free language, for any categorial grammar G
based on DFNL.

Proof. Fix G = (Σ, I, α0, Φ). We define a context-free grammar G′ such that
L(G′) = L(G). Let T be defined as above. By Lemma 2, T is finite up to
T−equivalence. We choose a set R ⊆ T which contains one formula from each
equivalence class. For β ∈ T , by r(β) we denote the unique type from R which
is T−equivalent to β.
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G′ is defined as follows. The terminal alphabet is Σ. The nonterminal alphabet
is R. Production rules are: (R1) β �→ γ, for β, γ ∈ R such that Φ 
 γ ⇒ β, (R2)
β �→ γδ, for β, γ, δ ∈ R such that Φ 
 (γ, δ) ⇒ β, (R3) r(β) �→ a, for β ∈ T (G),
a ∈ Σ such that (a, β) ∈ I. The initial symbol is r(α0).

Every derivation tree in G′ can be treated as a deduction from Φ in DFNL
which is based on deducible sequents appearing in (R1), (R2) and (CUT). Then,
L(G′) ⊆ L(G). The converse inclusion follows from Lemma 5. Let x ∈ L(G).
Then, x is the yield of some Y ∈ Lt(G). There exists X ∈ L(G, α0) such that Y
is obtained from X in the way described above. Let r(X) denote the tree resulting
from X after one has replaced each type β by r(β). Clearly, if X ∈ L(G, γ), then
r(X) ∈ L(G, r(γ)). It suffices to prove that, for any γ ∈ T and any X ∈ L(G, γ),
there exists a derivation of r(X) from r(γ) (as a derivation tree) in G′. We
proceed by induction on the number of commas in X . Let X ∈ L(G, γ) be a
single type, say, X = β. Then, Φ 
 β ⇒ γ, whence Φ 
 r(β) ⇒ r(γ). Then,
r(X) = r(β) is derivable from r(γ), by (R1). Let X ∈ L(G, γ) contain a comma.
Then, X must contain a substructure of the form (δ1, δ2), where δi ∈ T . We
write X = Z[(δ1, δ2)]. By Lemma 5, there exists δ ∈ T such that Φ 
 Z[δ] ⇒ γ
and (δ1, δ2) ⇒ δ. By the induction hypothesis, r(Z[δ]) can be derived from r(γ)
in G′. Then, r(X) can be derived from r(γ), by (R2). ��

It has been shown in [7,17] that every ε−free context-free language can be gener-
ated by a categorial grammar based on NL which uses very restricted types only:
p, p\q, p\(q\r), where p, q, r are variables; the designated type is also a variable
s. Now, we use the fact that DFNL is conservative over NL, since every resid-
uated groupoid can be embedded into a powerset algebra over a groupoid [8].
Accordingly, every ε−free context-free language is generated by some categorial
grammar based on DFNL.

The tree language Lt(G) is regular, for any grammar G based on DFNL.
It follows from the above theorem (and its proof), since Lt(G) equals the tree
language determined by derivation trees of G′. A direct proof uses the well-known
fact that a tree language L ⊆ T ∗ is regular if and only if there exists a congruence
of finite index on T ∗ which is compatible with L (it means: L is the join of some
family of equivalence classes of ∼). For X, Y ∈ T (G)∗, define X ∼ Y iff, for all
α ∈ T , Φ 
 X ⇒ α iff Φ 
 Y ⇒ α. One can replace ‘for all α ∈ T ’ by ‘for all
α ∈ R’, and consequently, there are at most 2n equivalence classes of ∼, where
n is the cardinality of R. So, ∼ is of finite index. Clearly ∼ is compatible with
L(G, α0). We prove that ∼ is a congruence on T (G)∗. Assume X ∼ Y . We show
(Z, X) ∼ (Z, Y ), for any Z ∈ T (G)∗. Assume Φ 
 (Z, X) ⇒ α, α ∈ T . By Lemma
5, there exists δ ∈ T such that Φ 
 (Z, δ) ⇒ α and Φ 
 X ⇒ δ. Then, Φ 
 Y ⇒ δ,
whence Φ 
 (Z, Y ) ⇒ α, by (CUT). We have shown that Φ 
 (Z, X) ⇒ α
implies Φ 
 (Z, Y ) ⇒ α. The converse implication has a similar proof. Therefore
(Z, X) ∼ (Z, Y ). Similarly (X, Z) ⇒ (Y, Z). Consequently L(G, α0) ∩ T (G)∗ is
regular. By the construction of Lt(G), the latter tree language is also regular.

The proof of Theorem 1 provides a construction of a context-free grammar
equivalent to a given categorial grammar based on DFNL, since 
 for DFNL is
decidable (it follows from FEP), and R can effectively be constructed. Actually
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we can construct a set R′ such that R ⊆ R′. For T , defined as above, let T ′

denote the set of all subformulas of formulas from T . Then, T is the closure
of T ′ under ∧,∨. Let α1, . . . , αk be all formulas from T ′. We form all finite
conjunctions αi1 ∧ · · · ∧ αil

such that 1 ≤ i1 < · · · < il ≤ k and arrange them in
a list β1, . . . , β2k−1. We define R′ as the set of all finite disjunctions βi1 ∨· · ·∨βil

such that 1 ≤ i1 < · · · < il ≤ 2k − 1. Clearly every formula from T is equivalent
to some formula from R′. Using a decision method for DFNL, one can extract
R from R′.

A syntactic decision method for DFNL can be designed like the one for NL
in [9]. One can assume that R′ is closed under ∧,∨ up to T−equivalence. More
precisely, for α, β ∈ R′, one defines α ∧′ β as the formula from R′ which results
from a natural reduction of α ∧ β to a formula from R′. α ∨′ β is defined in a
similar way. Sequents of the form α ⇒ β and (α, β) ⇒ γ such that α, β, γ ∈ R′

are called basic sequents. As in [9], one proves that a basic sequent is deducible
from Φ if and only if there exists a deduction of this sequent from Φ which
consists of basic sequents only (in rules for ∧,∨, these connectives are replaced
by ∧′ and ∨′, respectively). This yields a doubly exponential decision method
for DFNL and a construction of G′ of the same complexity. (In [9], it yields a
polynomial time decision procedure for 
 in NL.)

Analogous results can be obtained for the ∨−free fragment of FNL (with
assumptions). In the proof of Lemma 3, ∨ cannot be used; the finiteness of
the model follows from the fact that every closed set is the join of a family of
equivalence classes of ∼ (see above). The construction of G′ requires exponential
time.

5 Variants

The methods of this paper cannot be applied to associative systems L, FL, DFL.
Consequence relations for these systems are undecidable; see [9,13]. Analogues
of Theorem 1 are false (see Introduction).

They can be applied to several other nonassociative systems. The first example
is DFNLe, i.e. DFNL with the exchange rule:

(EXC)
X [(Y, Z)] ⇒ α

X [(Z, Y )] ⇒ α
.

DFNLe is complete with respect to distributive lattice-ordered commutative
residuated groupoids (ab = ba, for all elements a, b). Then, a\b = b/a, and one
considers one residual only, denoted a → b. All results from sections 2, 3 and 4
can be proved for DFNLe, and proofs are similar as above. Exception: not every
ε−free context-free language can be generated by a categorial grammar based
on DFNLe.

One can add the multiplicative constant 1, interpreted as the unit in unital
groupoids. We need the axiom (1R): ⇒ 1, and the rules:

(1Ll)
X [Y ] ⇒ α

X [(1, Y )] ⇒ α
, (1Lr)

X [Y ] ⇒ α

X [(Y, 1)] ⇒ α
.
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The empty antecedent is understood as the empty structure Λ, and one admits
(Λ, X) = X , (X, Λ) = X in metatheory. Again, there are no problems with
adapting our results for DFNL with 1 and DFNLe with 1. Caution: T contains
1, for any set T , and T ∗ contains Λ.

Additive constants ⊥ and � can also be added, with axioms:

(⊥L) X [⊥] ⇒ α , (�R) X ⇒ � .

They are interpreted as the lower bound and the upper bound, respectively, of
the lattice. T must contain these constants. In the proof of (an analogue of)
Lemma 1, one must consider new cases: X [Y ] ⇒ α is an axiom (⊥L) or (�R).
For the first case, if Y contains ⊥ then ⊥ is an interpolant of Y ; otherwise, � is
an interpolant of Y . For the second case, � is an interpolant of Y . In the proof
of Lemma 3, M(T , Φ) interprets ⊥ as CT (∅) and � as T

∗
. Now, every closed set

equals α, for some α ∈ T .
Instead of one binary product · one may admit a finite number of operations

o, o′, . . . of arbitrary arity: unary, binary, ternary and so on. Each n−ary oper-
ation o is associated with n residual operations oi, for i = 1, . . . , n. In models,
one assumes the (generalized) residuation law:

o(a1, . . . , an) ≤ b iff ai ≤ oi(a1, . . . , b, . . . , an) , (9)

for all i = 1, . . . , n (on the right-hand side, b is the i−th argument of oi). The
corresponding formal system, called Generalized Lambek Calculus GLC, was
presented in [8,9]. To each n−ary operation o one attributes a structure con-
structor (X1, . . . , Xn)o, and formula structures can contain different structure
constructors. Unary operations can be identified with (different) unary modali-
ties. GLC represents a multi-modal variant of NL. The introduction rules for o
and oi look as follows:

X [(α1, . . . , αn)o] ⇒ β

X [o(α1, . . . , αn)] ⇒ β
,

X1 ⇒ α1; . . . ; Xn ⇒ αn

(X1, . . . , Xn)o ⇒ o(α1, . . . , αn)
,

X [αi] ⇒ β; Yj ⇒ αj , for all j �= i

X [(Y1, . . . , oi(α1, . . . , αn), . . . , Yn)o] ⇒ β
,

(α1, . . . , X, . . . , αn)o ⇒ αi

X ⇒ oi(α1, . . . , αn)
.

The consequence relation of GLC is polytime, and the corresponding catego-
rial grammars generate ε−free context-free languages [9]. All results of this paper
can easily be adapted for GLC with ∧,∨ and distribution (and, possibly, (EXC)
for some binary operations, multiplicative units for them, and ⊥,�). In powerset
algebras, one defines o(U1, . . . , Un) as the set of all elements o(a1, . . . , an) such
that ai ∈ Ui, for i = 1, . . . , n; o admits n residual operations oi, i = 1, . . . , n:
oi(U1, . . . , Un) = {a ∈ M : o(U1, . . . , {a}, . . . , Un) ⊆ Ui}. (C4) takes the form:
o(C(U1), . . . , C(Un)) ⊆ C(o(U1, . . . , Un)). Each operation o in the powerset al-
gebra induces an operation on closed sets: oC(U1, . . . , Un) = C(o(U1, . . . , Un)).

At the end, we consider DFNL with ⊥,� and negation ¬, satisfying the laws
of boolean algebra. To axioms for ⊥ and � we add:

(¬1) α ∧ ¬α ⇒ ⊥ , (¬2) � ⇒ α ∨ ¬α .
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The resulting system, denoted BFNL, is strongly complete with respect to
lattice-ordered residuated groupoids whose underlying lattice is a boolean
algebra.

All results of this paper can be proved for BFNL. We consider an auxiliary
system S which is DFNL with �,⊥ and an additional product connective &
with residual → (so, it is a GLC-like system). We assume (EXC) for the struc-
ture constructor of &, whence & is commutative. We define ¬α = α → ⊥ and
admit axioms (¬1), (¬2). It is easy to show that S is a conservative extension of
BFNL (every model of the latter can be expanded to a model of the former, by
identifying & with ∧ and → with boolean implication). Now, for S we proceed
as for GLC with additives. T must contain �,⊥ and be closed under ∧,∨,¬;
then, Lemma 2 remains true, since boolean algebras are locally finite.

If we replace in S axioms (¬1), (¬2) by axioms α ∧ β ⇒ α&β and α&β ⇒
α ∧ β, then we obtain HFNL: a complete logic of Heyting-ordered residuated
groupoids. Now, T must be closed under ∧,∨, &, but Lemma 2 is still true. All
results of this paper can be proved for HFNL as well.

Theorem 2. Categorial grammars based on BFNL, HFNL generate context-
free languages. FEP holds for the classes of boolean-ordered and Heyting-ordered
residuated groupoids (algebras).
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